TSTP Solution File: QUA021^1 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : QUA021^1 : TPTP v6.4.0. Released v6.4.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox2/benchmark/theBenchmark.p

% Computer : n004.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 16091.75MB
% OS       : Linux 3.10.0-327.10.1.el7.x86_64
% CPULimit : 300s
% DateTime : Mon Mar 28 10:08:57 EDT 2016

% Result   : Unknown 0.07s
% Output   : None 
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----No solution output by system
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.03  % Problem  : QUA021^1 : TPTP v6.4.0. Released v6.4.0.
% 0.00/0.03  % Command  : python CASC.py /export/starexec/sandbox2/benchmark/theBenchmark.p
% 0.02/0.23  % Computer : n004.star.cs.uiowa.edu
% 0.02/0.23  % Model    : x86_64 x86_64
% 0.02/0.23  % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% 0.02/0.23  % Memory   : 16091.75MB
% 0.02/0.23  % OS       : Linux 3.10.0-327.10.1.el7.x86_64
% 0.02/0.23  % CPULimit : 300
% 0.02/0.23  % DateTime : Fri Mar 25 14:09:27 CDT 2016
% 0.02/0.23  % CPUTime  : 
% 0.07/0.24  Python 2.7.8
% 0.07/0.50  Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox2/benchmark/', '/export/starexec/sandbox2/benchmark/']
% 0.07/0.50  Failed to open /home/cristobal/cocATP/CASC/TPTP/Axioms/QUA001^0.ax, trying next directory
% 0.07/0.50  FOF formula (<kernel.Constant object at 0x2adcf368c200>, <kernel.DependentProduct object at 0x2adcf368c128>) of role type named emptyset_type
% 0.07/0.50  Using role type
% 0.07/0.50  Declaring emptyset:(fofType->Prop)
% 0.07/0.50  FOF formula (((eq (fofType->Prop)) emptyset) (fun (X:fofType)=> False)) of role definition named emptyset_def
% 0.07/0.50  A new definition: (((eq (fofType->Prop)) emptyset) (fun (X:fofType)=> False))
% 0.07/0.50  Defined: emptyset:=(fun (X:fofType)=> False)
% 0.07/0.50  FOF formula (<kernel.Constant object at 0x2adcf368c200>, <kernel.DependentProduct object at 0x2adcf368ccf8>) of role type named union_type
% 0.07/0.50  Using role type
% 0.07/0.50  Declaring union:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% 0.07/0.50  FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) union) (fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (U:fofType)=> ((or (X U)) (Y U)))) of role definition named union_def
% 0.07/0.50  A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) union) (fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (U:fofType)=> ((or (X U)) (Y U))))
% 0.07/0.50  Defined: union:=(fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (U:fofType)=> ((or (X U)) (Y U)))
% 0.07/0.50  FOF formula (<kernel.Constant object at 0x2adcf368ccf8>, <kernel.DependentProduct object at 0x2adcf368cb48>) of role type named singleton_type
% 0.07/0.50  Using role type
% 0.07/0.50  Declaring singleton:(fofType->(fofType->Prop))
% 0.07/0.50  FOF formula (((eq (fofType->(fofType->Prop))) singleton) (fun (X:fofType) (U:fofType)=> (((eq fofType) U) X))) of role definition named singleton_def
% 0.07/0.50  A new definition: (((eq (fofType->(fofType->Prop))) singleton) (fun (X:fofType) (U:fofType)=> (((eq fofType) U) X)))
% 0.07/0.50  Defined: singleton:=(fun (X:fofType) (U:fofType)=> (((eq fofType) U) X))
% 0.07/0.50  FOF formula (<kernel.Constant object at 0x2adcf368c0e0>, <kernel.Single object at 0x2adcf368c368>) of role type named zero_type
% 0.07/0.50  Using role type
% 0.07/0.50  Declaring zero:fofType
% 0.07/0.50  FOF formula (<kernel.Constant object at 0x2adcf368c1b8>, <kernel.DependentProduct object at 0x2adcf368ce18>) of role type named sup_type
% 0.07/0.50  Using role type
% 0.07/0.50  Declaring sup:((fofType->Prop)->fofType)
% 0.07/0.50  FOF formula (((eq fofType) (sup emptyset)) zero) of role axiom named sup_es
% 0.07/0.50  A new axiom: (((eq fofType) (sup emptyset)) zero)
% 0.07/0.50  FOF formula (forall (X:fofType), (((eq fofType) (sup (singleton X))) X)) of role axiom named sup_singleset
% 0.07/0.50  A new axiom: (forall (X:fofType), (((eq fofType) (sup (singleton X))) X))
% 0.07/0.50  FOF formula (<kernel.Constant object at 0x2adcf368cb90>, <kernel.DependentProduct object at 0x2adcf368ce18>) of role type named supset_type
% 0.07/0.50  Using role type
% 0.07/0.50  Declaring supset:(((fofType->Prop)->Prop)->(fofType->Prop))
% 0.07/0.50  FOF formula (((eq (((fofType->Prop)->Prop)->(fofType->Prop))) supset) (fun (F:((fofType->Prop)->Prop)) (X:fofType)=> ((ex (fofType->Prop)) (fun (Y:(fofType->Prop))=> ((and (F Y)) (((eq fofType) (sup Y)) X)))))) of role definition named supset
% 0.07/0.50  A new definition: (((eq (((fofType->Prop)->Prop)->(fofType->Prop))) supset) (fun (F:((fofType->Prop)->Prop)) (X:fofType)=> ((ex (fofType->Prop)) (fun (Y:(fofType->Prop))=> ((and (F Y)) (((eq fofType) (sup Y)) X))))))
% 0.07/0.50  Defined: supset:=(fun (F:((fofType->Prop)->Prop)) (X:fofType)=> ((ex (fofType->Prop)) (fun (Y:(fofType->Prop))=> ((and (F Y)) (((eq fofType) (sup Y)) X)))))
% 0.07/0.50  FOF formula (<kernel.Constant object at 0x2adcf368e368>, <kernel.DependentProduct object at 0x2adcf368c3b0>) of role type named unionset_type
% 0.07/0.50  Using role type
% 0.07/0.50  Declaring unionset:(((fofType->Prop)->Prop)->(fofType->Prop))
% 0.07/0.50  FOF formula (((eq (((fofType->Prop)->Prop)->(fofType->Prop))) unionset) (fun (F:((fofType->Prop)->Prop)) (X:fofType)=> ((ex (fofType->Prop)) (fun (Y:(fofType->Prop))=> ((and (F Y)) (Y X)))))) of role definition named unionset
% 0.07/0.50  A new definition: (((eq (((fofType->Prop)->Prop)->(fofType->Prop))) unionset) (fun (F:((fofType->Prop)->Prop)) (X:fofType)=> ((ex (fofType->Prop)) (fun (Y:(fofType->Prop))=> ((and (F Y)) (Y X))))))
% 0.07/0.50  Defined: unionset:=(fun (F:((fofType->Prop)->Prop)) (X:fofType)=> ((ex (fofType->Prop)) (fun (Y:(fofType->Prop))=> ((and (F Y)) (Y X)))))
% 0.07/0.52  FOF formula (forall (X:((fofType->Prop)->Prop)), (((eq fofType) (sup (supset X))) (sup (unionset X)))) of role axiom named sup_set
% 0.07/0.52  A new axiom: (forall (X:((fofType->Prop)->Prop)), (((eq fofType) (sup (supset X))) (sup (unionset X))))
% 0.07/0.52  FOF formula (<kernel.Constant object at 0x2adcf368e368>, <kernel.DependentProduct object at 0x2adcf368c3b0>) of role type named addition_type
% 0.07/0.52  Using role type
% 0.07/0.52  Declaring addition:(fofType->(fofType->fofType))
% 0.07/0.52  FOF formula (((eq (fofType->(fofType->fofType))) addition) (fun (X:fofType) (Y:fofType)=> (sup ((union (singleton X)) (singleton Y))))) of role definition named addition_def
% 0.07/0.52  A new definition: (((eq (fofType->(fofType->fofType))) addition) (fun (X:fofType) (Y:fofType)=> (sup ((union (singleton X)) (singleton Y)))))
% 0.07/0.52  Defined: addition:=(fun (X:fofType) (Y:fofType)=> (sup ((union (singleton X)) (singleton Y))))
% 0.07/0.52  FOF formula (<kernel.Constant object at 0x2adcf368ec68>, <kernel.DependentProduct object at 0x2adcf368c1b8>) of role type named order_type
% 0.07/0.52  Using role type
% 0.07/0.52  Declaring leq:(fofType->(fofType->Prop))
% 0.07/0.52  FOF formula (forall (X1:fofType) (X2:fofType), ((iff ((leq X1) X2)) (((eq fofType) ((addition X1) X2)) X2))) of role axiom named order_def
% 0.07/0.52  A new axiom: (forall (X1:fofType) (X2:fofType), ((iff ((leq X1) X2)) (((eq fofType) ((addition X1) X2)) X2)))
% 0.07/0.52  FOF formula (<kernel.Constant object at 0x2adcf368c200>, <kernel.DependentProduct object at 0x2adcf36eeea8>) of role type named multiplication_type
% 0.07/0.52  Using role type
% 0.07/0.52  Declaring multiplication:(fofType->(fofType->fofType))
% 0.07/0.52  FOF formula (<kernel.Constant object at 0x2adcf368ce18>, <kernel.DependentProduct object at 0x2adcf36ee560>) of role type named crossmult_type
% 0.07/0.52  Using role type
% 0.07/0.52  Declaring crossmult:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% 0.07/0.52  FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) crossmult) (fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (A:fofType)=> ((ex fofType) (fun (X1:fofType)=> ((ex fofType) (fun (Y1:fofType)=> ((and ((and (X X1)) (Y Y1))) (((eq fofType) A) ((multiplication X1) Y1))))))))) of role definition named crossmult_def
% 0.07/0.52  A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) crossmult) (fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (A:fofType)=> ((ex fofType) (fun (X1:fofType)=> ((ex fofType) (fun (Y1:fofType)=> ((and ((and (X X1)) (Y Y1))) (((eq fofType) A) ((multiplication X1) Y1)))))))))
% 0.07/0.52  Defined: crossmult:=(fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (A:fofType)=> ((ex fofType) (fun (X1:fofType)=> ((ex fofType) (fun (Y1:fofType)=> ((and ((and (X X1)) (Y Y1))) (((eq fofType) A) ((multiplication X1) Y1))))))))
% 0.07/0.52  FOF formula (forall (X:(fofType->Prop)) (Y:(fofType->Prop)), (((eq fofType) ((multiplication (sup X)) (sup Y))) (sup ((crossmult X) Y)))) of role axiom named multiplication_def
% 0.07/0.52  A new axiom: (forall (X:(fofType->Prop)) (Y:(fofType->Prop)), (((eq fofType) ((multiplication (sup X)) (sup Y))) (sup ((crossmult X) Y))))
% 0.07/0.52  FOF formula (<kernel.Constant object at 0x2adcf368c200>, <kernel.Single object at 0x2adcf36eeb00>) of role type named one_type
% 0.07/0.52  Using role type
% 0.07/0.52  Declaring one:fofType
% 0.07/0.52  FOF formula (forall (X:fofType), (((eq fofType) ((multiplication X) one)) X)) of role axiom named multiplication_neutral_right
% 0.07/0.52  A new axiom: (forall (X:fofType), (((eq fofType) ((multiplication X) one)) X))
% 0.07/0.52  FOF formula (forall (X:fofType), (((eq fofType) ((multiplication one) X)) X)) of role axiom named multiplication_neutral_left
% 0.07/0.52  A new axiom: (forall (X:fofType), (((eq fofType) ((multiplication one) X)) X))
% 0.07/0.52  We need to prove []
% 0.07/0.52  Parameter fofType:Type.
% 0.07/0.52  Definition emptyset:=(fun (X:fofType)=> False):(fofType->Prop).
% 0.07/0.52  Definition union:=(fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (U:fofType)=> ((or (X U)) (Y U))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% 0.07/0.52  Definition singleton:=(fun (X:fofType) (U:fofType)=> (((eq fofType) U) X)):(fofType->(fofType->Prop)).
% 0.07/0.52  Parameter zero:fofType.
% 0.07/0.52  Parameter sup:((fofType->Prop)->fofType).
% 0.07/0.52  Axiom sup_es:(((eq fofType) (sup emptyset)) zero).
% 0.07/0.52  Axiom sup_singleset:(forall (X:fofType), (((eq fofType) (sup (singleton X))) X)).
% 0.07/0.53  Definition supset:=(fun (F:((fofType->Prop)->Prop)) (X:fofType)=> ((ex (fofType->Prop)) (fun (Y:(fofType->Prop))=> ((and (F Y)) (((eq fofType) (sup Y)) X))))):(((fofType->Prop)->Prop)->(fofType->Prop)).
% 0.07/0.53  Definition unionset:=(fun (F:((fofType->Prop)->Prop)) (X:fofType)=> ((ex (fofType->Prop)) (fun (Y:(fofType->Prop))=> ((and (F Y)) (Y X))))):(((fofType->Prop)->Prop)->(fofType->Prop)).
% 0.07/0.53  Axiom sup_set:(forall (X:((fofType->Prop)->Prop)), (((eq fofType) (sup (supset X))) (sup (unionset X)))).
% 0.07/0.53  Definition addition:=(fun (X:fofType) (Y:fofType)=> (sup ((union (singleton X)) (singleton Y)))):(fofType->(fofType->fofType)).
% 0.07/0.53  Parameter leq:(fofType->(fofType->Prop)).
% 0.07/0.53  Axiom order_def:(forall (X1:fofType) (X2:fofType), ((iff ((leq X1) X2)) (((eq fofType) ((addition X1) X2)) X2))).
% 0.07/0.53  Parameter multiplication:(fofType->(fofType->fofType)).
% 0.07/0.53  Definition crossmult:=(fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (A:fofType)=> ((ex fofType) (fun (X1:fofType)=> ((ex fofType) (fun (Y1:fofType)=> ((and ((and (X X1)) (Y Y1))) (((eq fofType) A) ((multiplication X1) Y1)))))))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% 0.07/0.53  Axiom multiplication_def:(forall (X:(fofType->Prop)) (Y:(fofType->Prop)), (((eq fofType) ((multiplication (sup X)) (sup Y))) (sup ((crossmult X) Y)))).
% 0.07/0.53  Parameter one:fofType.
% 0.07/0.53  Axiom multiplication_neutral_right:(forall (X:fofType), (((eq fofType) ((multiplication X) one)) X)).
% 0.07/0.53  Axiom multiplication_neutral_left:(forall (X:fofType), (((eq fofType) ((multiplication one) X)) X)).
% 0.07/0.53  There are no conjectures!
% 0.07/0.53  Adding conjecture False, to look for Unsatisfiability
% 0.07/0.53  Trying to prove False
% 0.07/0.53  % SZS status GaveUp for /export/starexec/sandbox2/benchmark/theBenchmark.p
%------------------------------------------------------------------------------